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My Background
• BSME Ohio Northern University
• SM & ScD MIT/WHOI Joint Program 

Oceanographic & Mechanical 
Engineering

• Post-doc at Monterey Bay Aquarium 
Research Institute

• Consultant to Disney, BAE Systems, 
etc. –
design and control, robotics

• MIT Research Engineer –
fluid mechanics, biomimetics, 
underwater vehicles 

• MIT Assistant Professor –
marine robots, electric ship,          
design problems 



Extraordinary  Challenges in Marine Systems for 
US Navy, Offshore Oil & Gas, Ocean Science, etc.
• Setting:  

– Large physical disturbances;
– Autonomy at all scales due to huge domain;
– Dependence on poor acoustic channel; 
– Limited on-board energy, biofouling, fouling, traffic, water 

pressure, etc.

• Robotic Systems: autonomy and planning; high number of 
agents; integrated mission

• Electric Ship:  a micro-grid with dynamic loading, and 
damage scenarios

• MY LONG-TERM GOAL:  New Design Principles for Complex 
Systems in the Marine Environment



Active Efforts in My Group
• Relaxations and approximations in DC/AC power system 

design; spectral description of flow networks  (J. Taylor)

• Ship Hull Inspection Algorithms and Experiments       
(B. Englot, H. Johannsson, M. Kaess, with J. Leonard)

• Design rules based on  asymptotic random graph 
models

• Marine Devices:  
– vertical glider for precision seafloor delivery,
– safety valve for flow control down-hole, 
– low-cost acoustic modems, 
– quadrotors for HAB outbreaks.



Navy's class of Type 45 Destroyers

ALSTOM 
Advanced 
Induction 

Motor

All-Electric Ship
QEII

Tractor podded propulsors



Simple Electric Ship Reference Model 
with Complex Dynamics

Three-Phase Propulsion System

K. Schmitt, MIT

Add controllers, user interface, monitoring 
s/w, instrumentation, etc….!

Seven-state nonlinear 
dynamical system

Fully coupled states

Stiff equations; wide 
range of time 
constants

Mechanical, 
hydrodynamic, and 
electric constitutive 
equations

Some Key Design Challenges: 
Robustness to Attack/Damage,

Reconfiguration,
Very Expensive Simulations 

vs. Scalability of Designs 



Adaptive
Sampling

Coordinated
Behavior

Sonars

Uncertain Communication in the 
Acoustic Channel

Self-navigating
Network

GPS and Remote Sensing Satellites

Advanced Sensors

Autonomous Surface
And Underwater Vehicle 
Systems

Surface Traffic

Image:  J. Leonard and H. Schmidt, MIT

Some Key Design Challenges:  
Planning, Integration,  Acoustics, 

Physical Disturbances



www2.swaylocks.com

ngoilgas.com

Offshore Tasks for 
Autonomous Systems

• Instrument 
delivery/recovery

• Routine inspection
• Repair
• In-water 

decommissioning  (!)

(Deepwater Horizon)

saferenvironment.wordpress.com



R/V Oceanus at 
WHOI

HAUV imaging with 
the Blueview 
“Microbathymetry 
Blazed Array” Sonar

H. Johannsson, MIT

SN‘s 4-18 ordered!

1. “Non-complex” area 2. “Complex” area



In-Water Ship Hull Inspection with 
Autonomous Robots

1. The Objective and its Components
The task forms a rich and important robotics 
problem that spans several disciplines

2. Non-complex areas:  Feature-Based Nav
Sonar and visual imagery both have a key role in 
building maps and navigating with them

3. Complex areas:  Feature-Based Planning
Guaranteed approximation algorithms to a 
covering tour problem can provide practical plans 
quickly



HAUV1B:  Built to work close-in

M. Kokko, MIT

DIDSON:  Imaging/Profiling Sonar
DVL :  Doppler odometry plus four ranges

pitch axis DVL 

\DIDSON 



Heritage:  
Harris and Slate 1999:  Lamp Ray

Nav:  300kHz LBL



Long-Baseline Acoustic Navigation –
flyers and holidays! Image from Bahr 2009

Four transponders 
and a moving vehicle 
in a long-baseline 
configuration; 
shown are travel 
times, which encode 
distance:  
c ~ 1500m/s



Ship Inspection Strategies – Open Areas

Horizontal Slices Vertical Slices

HAUV
DVL beams
DIDSON beams

Side
View

View
From

Behind



Long Vertical Survey

• Feb. 2nd, 2006
• Operator in trailer + RHIB
• FO tether + WiFi
• 34 m X 8 m, 2 m spacing
• 31 minute long survey
• DIDSON:

– Automatic aiming
– Real-time display
– Logging both:

• In the vehicle
• In the topside 

computer

Support RHIB

FO

J. Vaganay, Bluefin



Typical Didson Imagery

Circular hatch landmark

Cooler end



 

Start/Finish 

Starboard 

Bottom coverage shown 
with DIDSON footprints; 
dataset first used for 
SLAM (ESEIF) 

M. Walter, MIT



AUVFest 2008: Map-Building and Mosaicking on the USS Saratoga

• Nine bucket targets were planted 
on the hull of the Saratoga in 
rows of three (the bottom row 
was obscured by biofouling) 

AcousticView



Why Ship Hull Inspection is not necessarily a 
“planning under uncertainty” robotics problem

• Structure to be inspected is partially known:  CAD 
models, preliminary scans, human knowledge, etc.

• For the foreseeable future, humans will watch and be 
close by

• Navigation is not completely dependent on the 
environment; odometry and heading might be quite 
good over short time frames

• 100% coverage is the goal – does exploration achieve 
it?

• Sensor input is already difficult enough to interpret!



The Team

Bluefin Robotics
(J. Vaganay)
Vehicle operations,
open-hull lines

Florida Atlantic 
University 
(P.-P. Beaujean)
Acoustic modem

University of Michigan
(R. Eustice)
Visual imagery and SLAM

SeeByte (S. Reed)
Filtering, servos, mesh, 
CAD/CAC

MIT (F. Hover, J. Leonard)
Global SLAM (iSAM)
Sonar imagery and SLAM, mesh, 
path planning
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“Cake” Target:  Visual vs. Sonar Imaging for 
Hull-Relative Navigation in Non-Complex Area

H. Johannsson, MIT

East Coast ports RARELY
have good water clarity; 
this is the best possible 
view! Normal Dist. 

Transform, Biber
& Strasser 2003



Ship Features for Hull-Relative Navigation

H. Johannsson, MIT



Time as a third axis
Charles River, Boston

Registrations

H. Johannsson and M. Kaess, MIT



Correct vs. Dead-Reckoned Path

H. Johannsson and M. Kaess, MIT

Charles River, Boston



Closing the Loop:
HAUV1B on 
King Triton, 
East Boston, MA

Representative registration pair, 
showing cooling channels and 
biofouling

Dead-reckoned path over one 
hour vs. feature-based nav.

H. Johannsson and M. Kaess, MIT



Vision SLAM from Ryan Eustice, UMichigan San Diego, CA Feb 2011
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National Geographic
May 2008

Stainless Steel 
Propeller of an 
Ice-Breaker:  Complex!

Obtain a set of images 
that covers the 
structure, in minimum 
time.

Combination of classic 
traveling salesman and 
set cover problems, both 
known to be NP-hard 

Seek guaranteed  
approximation factors in 
polynomial time, for 
on-site use



Surveying the propeller 
of a 300-meter Military 
Sealift Command Ship 
(propeller about 4 
meters in diameter)

Surveying a shaft of the 
same ship (shaft about 
1 meter in diameter)

DIDSON Profiling Sonar Shows Sections Only



Oh say can you see?  
Not your 2D coverage problem

B. Englot, MIT
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Watertight mesh 
on a 7m prop for 
183m  USS 
Curtiss, from 
coarse profiling 
sonar

Feb 2011, San 
Diego

1m props on a 28m  vessel

HAUV

B. Englot, MIT



B. Englot, MIT

Watertight mesh on a 21-foot prop for 600-foot  USS Curtiss, from profiling sonar
Feb 2011, San Diego

45 min vehicle run-time, 10Hz sampling of range scans
25k points subsampled from >>1m



B. Englot, MIT

An Outcome of Sampling-Based Planning in 
5D Configuration Space, 4000 Targets; ~30% “efficient”

start/
end

HAUV

Integer programming solution to RPP with set cover constraints



Some Multi-Goal Planning Works & Context

Select goals in C to achieve coverage or reconstruct an 
object(s), e.g., Danner & Kavraki 2000, Easton & Burdick 2005

Given goals in C, find feasible path of minimum cost that 
visits them, e.g., All-Pairs PRM (Spitz & Requisha. 2000), Lazy 
MST (Saha et al., 2006), Ant Colony Opt. (Englot & Hover, 2011)

Given targets, covering goals, and feasible edges, find 
min-cost path (VPP), e.g., Scott et al. 2003, Wang et al. 2007

We consider the whole design problem:
Targets and obstacles given – i.e., the structure only



Multi-Goal Path Planning is Combinatorial  and 
We Need O(100,000) targets  Cost Explosion

Approximate the Set Cover & TSP combined problem with the 
Tour Cover (TC) of Arkin, Halldorsson, and Hassin (1993):

Given a graph with weighted edges, compute the
minimum-cost tour that is a vertex cover

Step 1:  Map smallest edge weights onto nodes, and solve the weighted 
vertex cover (WVC)

Step 2:  Condense the graph around the edges that defined the WVC

Step 3:  Solve a reduced TSP, and then expand out the condensed edges

APXTC <  2 APXWVC + APXTSP_



A Modification to the TC Achieves Practical Coverage Planning 

• Insert Step 0:  Use sampling to generate a pose cover of 
discrete mesh targets; interpret targets as links in 
configuration space

• Replace condensing step (2) with direct edges if shorter

• Enforce a 2-cover bipartite graph:  APXWVC = 1, in LP time

• Use Christofides approximation:  APXTSP < 3/2, in |V|3 time

 APXTC <  3.5 is achievable formally; but Step 0 does not  
address performance of the cover.

How will it do?

_   

_



Some Choices on the Sampled Cover

Regular 
lattice 
poses

Entirely  
random 
poses

Random 
poses on 
manifold

Build cover 
on the fly; no 
revisions

Revise and 
refine cover

Etc.



A Computational 
Experiment:

3D cubic domain with no 
obstacles

Uniformly distributed point 
targets

Vehicle pose [ X , Y , Z, hdg ] 

Sensor footprint is a cube 
with 1% of domain volume



For initial graph construction, consider options (all polynomial time):

A. Set Cover Heuristic:  Take first available cover, keeping all poses that 
see any new target (not a 2-cover); links accrue.  
SC via rounding LP has APXSC < f  (highest multiplicity of sightings)

B. Single Cover: Sample until every target is attached to a pose.  
No further graph work – each pose is visited.

C. 2-Cover  WVC:  Take first available 2-cover; reject extra links & poses.  
WVC via rounding LP has    APXWVC < 2

D. 2-Cover Bipartite WVC:  Take first available bipartite 2-cover; greedy
partition heuristic to maximize targets hit; reject extra links & poses.  
WVC via LP is exact     APXWVC = 1

_
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and then solve TSP with Christofides



Computational Experiment
Result:  Bipartite WVC  becomes ~15% better than baseline at high N; 

and TOTAL efficiency at 100,000 targets is about 0.50
Single-cover becomes ~5% better than baseline at high N

opt; zero vacancy



In-Water Ship Hull Inspection with 
Autonomous Robots

1. The Objective and its Components
The task forms a rich and important robotics 
problem that spans several disciplines

2. Non-complex areas:  Feature-Based Nav
Sonar and visual imagery both have a key role in 
building maps and navigating with them

3. Complex areas:  Feature-Based Planning
Guaranteed approximation algorithms to a 
covering tour problem can provide practical plans 
quickly



Hard Open Problems Relevant to the 
Marine Inspection Missions

• Better Sensors and Comms

• 3D SLAM and real-time control on complex 
structures

• The sealion problem:  two minutes
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